

Unit: V- Sensorless Control of PMSM Drive

Class-16: 20th March 2024

Presented by Dr. Rajesh M. Pindoriya

<u>rajeshpindoriya@ieee.org</u> Website: <u>rmpindoriya.weebly.com</u> Subject Name EE: Modelling and Control of Electric Drives

Discussed in the Previous Class

In the previous class discussed the following topics:

- Space Vector PWM Method
- ✤ Difference Between VSI and CSI
- Cube Law Between Speed and Power
- Development of Dynamic Models for Electric Drives
- Simulation Tools to Check the Performance of Electric Drive
- Types of Duty Cycles

Lecture Outcomes

Introduction of Permanent Magnet Synchronous Motor (PMSM) Drives

Difference Between PMSM and Brushless DC (BLDC) Motor Drives

✤ Working Principle of PMSM Drives

Speed Control of Sensor and Sensorless PMSM Drive

Sensorless Operation of PMSM Drive

Simulation Results of Sensorless PMSM Drive

Lecture remarks: Key points of today's class

IM, PMSM, BLDC, SRM

Introduction: PMSM Drive

- The PMSM consists of conventional threephase windings in the stator and permanent magnets in the rotor.
- The purpose of the field windings in the conventional synchronous machine is done by permanent magnets in PMSM.
- The conventional synchronous machine requires an AC and DC supply, whereas the PMSM requires only an AC supply for its operation.

3-Φ Inverter fed PMSM

One of the greatest advantages of PMSM over its counterpart is the removal of DC supply for field excitation

Introduction: PMSM Drive

 \succ In synchronous motors, the rotor rotates at the speed of the stator revolving field.

 \succ The speed of the revolving stator field is called synchronous speed.

- The synchronous speed (ω_s) can be found by the frequency of the stator input supply (f_s), and the number of stator pole pairs (p).
- The stator of a three-phase synchronous motor consists of distributed sine three-phase winding, whereas the rotor consists of the same number of *p*-pole pairs as the stator, excited by permanent magnets.

$$N = \frac{120f}{P} \qquad (1)$$

where N is synchronous speed, *f* is frequency of AC supply in Hz; *P* number of poles; *p* pole pairs and it is given by (P/2).

Classifications of PM Motors

Classifications of PM Motors

Eb

Fig. 1. Concentrated stator winding (BLDC Motor).

Fig. 2. Distributed stator winding (PMSM).

Same Induction Motor

Classifications of PM Motors

Fig. 2. Pictorial view of a stator of PM motors: (a) distributed winding (PMSM) and (b) concentrated winding (BLDC).

PMSM drives	BLDC motor drives
Fed with AC	Fed with DC
Sinusoidal flux density (driven by magnetic design)	Square flux density (driven by magnetic design)
Back EMF is sinusoidal (driven by winding and magnets design)	Back EMF is trapezoidal (driven by winding and magnets design)
Current is sinusoidal (driven by the controller, which makes the	Current is trapezoidal (driven by the controller, which makes the controller easier
controller more complex and costlier)	and cheaper)
For equal resistive losses, power density is less	For equal resistive losses, power density is 15.4% higher than PMSM
The conduction and switching losses are higher because of three	The conduction and switching losses are smaller because of only two transistors in
transistors in inverter conduct	inverter conduct
Torque ripple due to the commutation of currents is low	Torque ripple due to the commutation of currents is high
The coils of distributed winding are not co-axial. They are rather	The coils of the concentrated winding are co-axial. This means, all the winding has
distributed in various slots along the air-gap periphery	the same magnetic axis
The back EMF induced in such winding is independent of pitch and	The back EMF induced in the distributed winding is dependent on the value of
distribution factor	pitch factor " K_p " and distribution factor " K_d ".
$\mathbf{E}=4.44\times\mathbf{N}_{\mathrm{ph}}\times\mathbf{f}\times\boldsymbol{\Phi}$	$\mathbf{E} = 4.44 \times \mathbf{N}_{ph} \times \mathbf{f} \times \mathbf{\phi} \times \mathbf{K}_{p} \times \mathbf{K}_{d}$
Torque equation is given by	Torque equation is given by
$T_e = \left(\frac{3}{2}\right) \left(\frac{P}{2}\right) \left[(\lambda_f) - (L_d - L_q)I_d \right] I_q$	$T_e = \frac{\left[(e_a i_a) + (e_b i_b) + (e_c i_c)\right]}{\omega_m} \qquad \qquad$
	$e_a = F_a(\theta_r) \times \lambda_f \times \omega_m$
	$e_b = F_b(\theta_r) \times \lambda_f \times \omega_m$
	$e_c = F_c(\theta_r) \times \lambda_f \times \omega_m$

Pros and Cons of PMSM Drive

Pros

- 1. The DC field winding of the rotor is replaced by permanent magnets
- 2. The advantages of elimination are reduced field copper loss
- 3. lower rotor inertia
- 4. higher power density
- 5. More robust construction of the rotor

Cons

- 1. Loss of flexibility of field flux control
- 2. Possible demagnetization effect

Use of PMSM

- 1. High Efficiency Not in Induction Motor
- 2. Better Controllability 🍃
- 3. Sensorless Operation 🧈
- 4. High torque to weight ratio
- 5. High energy Density Hence compact
- 6. Low acoustic Noise Compared to DC brushed and brush-less Motors

0

- 7. No excitation losses 💙
- 8. Fast dynamic performance \checkmark

Speed Control of PMSM Drive (Sensor based)

Speed Control of PMSM Drive (Sensorless)

Advantages

- More compact drive
- **2.** Low EMI (Absence of connecting leads)
- 3. Cost of position-encoding device is avoided
- Increases mechanical robustness
- **5** Suitable for hostile environments including temperature
 - Ensure that the inertia of the system is not increased
 - Low maintenance

- > The position of the rotor in electric machines by measuring only their voltages and currents sensing
- \blacktriangleright These methods are usually designated as sensorless, encoderless, or self sensing [12-74]
- PMSM, the position of the rotor can be determined by the back electromotive force (EMF) or by the position dependence of the inductances, flux linkage sensing etc.

Sensorless Control Methods of PMSM Drive

Disadvantages of Sensored based PMSM Drive

Why Sensorless Operation

Reduction of hardware complexity & cost

Increased mechanical robustness & overall ruggedness

Higher reliability Decreased maintenance

Unaffected machine inertia

Classification of Sensorless Techniques for PMSM Drive

Block diagram for position and speed estimation of PMSM drive

Fig.1. Block diagram for position and speed estimation of PMSM drive

Vector control block diagram of PMSM drive with estimated rotor position

Fig. 2. Vector control block diagram of PMSM drive with estimated rotor position

Mathematical Model of Sensorless PMSM Drive

Expressing three-phase stator voltages and currents in terms of stationary reference frame. $V_q^{(\varsigma)} = V_{as}$ $V_{d}^{s} = \left(\frac{V_{cs} - V_{bs}}{\sqrt{2}}\right)^{1/2}$ (2) $i_a^s = i_{as}$ (3) $i_d^s = \left(\frac{i_{cs} - i_{bs}}{\sqrt{3}}\right)$ (4) $V_d^e = (R_d + pL_d)i_d^e - \omega_e L_d i_q^e - \psi_e L_d i_q^e - er chule$ $V_q^e = (R_q + pL_q)i_q^e + \omega_e L_d i_d^e + \omega_e \varphi_f - er chule$ ٹ (5) (6) $(-5)^{2} = (-5)^{2} (-1)^{2} (-5)^{2}$ Transforming stationary frame to rotatory frame $i_d^e = i_d^s \cos \theta_e + i_q^s \sin \theta_e$

Mathematical Model of Sensorless PMSM Drive

$$i_{q}^{e} = -i_{a}^{s} \sin \theta_{e} + i_{q}^{s} \cos \theta_{e} \qquad (8)$$

$$V_{d}^{e} = V_{d}^{s} \cos \theta_{e} + V_{q}^{s} \sin \theta_{e} \qquad (9)$$

$$V_{q}^{e} = -V_{d}^{s} \sin \theta_{e} + V_{q}^{s} \cos \theta_{e} \qquad (10)$$

$$\omega_{e} = \frac{\left[\sqrt{\left\{(V_{q}^{s} - R_{q}i_{q}^{s} - L_{d}pi_{q}^{s})^{2} + (V_{d}^{s} - R_{d}i_{d}^{s} - L_{d}pi_{d}^{s})^{2}\right\}\right]}{\varphi_{f}} \qquad (11)$$
Putting the values of i_{d}^{e} and i_{q}^{e} from equation (7), (8) in eqn. (5) and (1) and comparing with eq. (10) and (11) we get $\theta_{e} = \tan^{-1}(x/y)$

$$x = \left[-V_{d}^{s} + R_{d}i_{d}^{s} + L_{d}pi_{d}^{s} - \omega_{e}(L_{q} - L_{d})i_{q}^{s}\right] \qquad (13)$$

$$y = \left[V_{q}^{s} - R_{q}i_{q}^{s} - L_{d}pi_{q}^{s} - \omega_{e}(L_{q} - L_{d})i_{d}^{s}\right] \qquad (14)$$

Simulation Results of Sensorless PMSM Drive

Fig. 3. Simulation results of V/F PMSM drive: (a) reference and actual speed response, (b) three-phase stator phase voltage response, (c) three-phase stator phase current response and (d) $I_d - I_a$ axis current response.

Simulation Results of Sensorless PMSM Drive

Fig. 4. Simulation results of sensorless PMSM drive: (a) comparison of sensored and sensorless rotor position response and (b) comparison speed response.

Simulation Results of Sensorless PMSM Drive

- Measured and estimated unit vector of sine is compared.
- Both the quantities are coming as a sine wave but having some phase difference between them.

Fig. 5. Measured and estimated unit vectors: (a) Sine unit vector and (b) Cosine unit vector

Key Points from Today's Class

- Introduction of PMSM Drives
- Difference Between PMSM and BLDC Motor Drives
- Working Principle of PMSM Drives
- Speed Control of Sensor and Sensorless PMSM Drive
- Sensorless Operation of PMSM Drive
- Simulation Results of Sensorless PMSM Drive

Thank you so much for your attentions Q & A