

Unit: III- Control Strategies

Class-12: 19th February 2024

Presented by Dr. Rajesh M. Pindoriya

<u>rajeshpindoriya@ieee.org</u> Website: <u>rmpindoriya.weebly.com</u> Subject Name EE: Modelling and Control of Electric Drives

Discussed in the Previous Class

In the previous class discussed the following topics:

- Three Phase Half Controlled Rectifier Control of DC Motor
- DC Motor Reversing Switch Diagram
- Dual Converter Control of DC Separately Excited Motor
- Drawbacks of Rectifier Fed DC Drives
- Chopper Control of Separately Excited DC Motor

Lecture Outcomes

Chopper Control of Separately Excited DC Motor

- Regenerative Braking of Chopper fed Separately Excited DC Motor
- Motoring and Regenerative Braking of DC Motor

Dynamic Braking of DC Motor

Lecture remarks: Key points of today's class

Motoring Control:

- > A transistor Chopper Control of Separately Excited DC Motor drive is shown in Fig. 1.
- Transistor T_r is operated periodically with period T and remains on for a duration t_{on} . Present-day choppers operate at a frequency that is high enough to ensure continuous conduction.

Fig. 1. Circuit diagram of chopper control of the separately excited motor.

- Waveforms of motor terminal voltage v_a and armature current i_a for continuous conduction are shown in Fig. 2.
- > During on-period of the transistor, $0 \le t \le t_{on}$, the motor terminal voltage is V.

Fig. 1. Waveform of chopper control of the separately excited motor.

(1)

The operation is described by

$$R_{a}i_{a} + L_{a}\frac{di_{a}}{dt} + E = V, \quad 0 \le t \le t_{\text{on}}$$

- ➤ In this interval, the armature current increases from i_{a1} to i_{a2} .
- Since the motor is connected to the source during this interval, it is called Duty Interval.

Fig. 1. Circuit diagram of chopper control of the separately excited motor.

- > At $t = t_{on}$, T_r is turned-off.
- ➢ Motor current freewheels through diode D_F and motor terminal voltage is zero during interval t_{on} ≤ t ≤ T.
- > Motor operation during this interval, known as freewheeling interval, is described by

$$R_{a}i_{a} + L_{a}\frac{di_{a}}{dt} + E = 0, \quad t_{on} \le t \le T$$

$$(2)$$

Motor current decreases from i_{a2} to i_{a1} during this interval.

Ratio of duty interval t_{on} to chopper period T is called **duty ratio or duty cycle** (δ). Thus

Regenerative Braking of Chopper fed Separately Excited DC Motor

- Chopper Control of Separately Excited DC Motor for regenerative braking operation is shown in Fig. 1.
- Transistor T_r is operated periodically with a period T and on-period of t_{on} .
- Solution Waveforms of motor terminal voltage v_a and armature current i_a for continuous conduction are shown in Fig. 2.
- ➤ Usually an external inductance is added to increase the value of L_a. When T_r is on, i_a increases from i_{a1} to i_{a2}.

Fig. 1. Circuit diagram of regenerative braking of DC motor.

Fig. 2. Waveform of regenerative braking of DC motor.

- The mechanical energy converted into electrical by the motor, now working as a generator, partly increases the stored magnetic energy in armature circuit inductance and the remainder is dissipated in armature resistance and transistor.
- When T_r is turned off, armature current flows through diode D and source V, and reduces from i_{a2} to i_{a1} .
- ➤ The stored electromagnetic energy and energy supplied by machine is fed to the source. The interval $0 \le t \le t_{on}$ is now called the energy storage interval and interval $t_{on} \le t \le T$ T the duty interval. If δ is again defined as the ratio of duty interval to period T, then

$$\delta = \frac{\text{Duty interval}}{T} = \frac{T - t_{\text{on}}}{T}$$
(1)

From Fig. 2.

$$V_{a} = \frac{1}{T} \int_{t_{out}}^{T} V dt = \delta V$$

and from Fig. 1.

 $I_{\rm a} = \frac{E - \delta V}{R_{\rm a}}$

Fig. 1. Circuit diagram of regenerative braking of DC motor.

Fig. 2. Waveform of regenerative braking of DC motor.

(4)

Since l_a has reversed

$$T = -KI_{a}$$

From Eqs. (3) and (4)

$$\omega_{\rm m} = \frac{\delta V}{K} - \frac{R_{\rm a}}{K^2} T \tag{5}$$

The nature of speed torque characteristic is shown in Fig. 3.

Fig. 3. Speed torque curves of chopper-controlled DC motor.

Motoring and Regenerative Braking of DC Motor

Motoring and Regenerative Braking of DC Motor \succ Chopper circuits of Figs. 1 and 2 can be combined to get a two-quadrant chopper of Fig. 4, which can provide motoring and Motor regenerative braking operations in the forward direction. (a) \succ Transistor T_{r1} with diode D₁ form a chopper TON 1054 circuit similar to that of Fig. 1, and $T + \delta T$ therefore, provide control for forward 2TT ST motoring operation. > Bruning 01 \succ Transistor T_{r_2} with diode D_2 forms a chopper circuit similar to that of Fig. 2, Trl and therefore, provides control for forward Fig. 4. Chopper for forward motoring regenerative braking operation. and braking control. 16

- Thus, for motoring operation transistor T_{r1} is controlled and for braking operation transistor T_{r2} is controlled.
- Shifting of control from T_{rl} to T_{r2} shifts operation from motoring to braking and vice versa.
- > In servo drives where fast transition from motoring to braking and vice versa is required, both T_{r1} and T_{r2} are controlled simultaneously.

- ► In a period T, T_{rl} is given gate drive from 0 to δT and T_{r2} is given gate drive from δT to T, where δ is the duty ratio for T_{rl} .
- > Therefore, from 0 to δT motor is connected to the source either through T_{rl} or D_2 depending on whether the motor current i_a is positive or negative.
- > Since V > E, during this period the rate of change of current is always positive.
- Similarly from δT to T, motor armature is shorted either through D_1 or T_{r2} depending on whether i_a is positive or negative and during this period rate of change of current is always negative.

➢ Motor terminal voltage and current waveforms are shown in Fig. 4 (b).

(1)

(2)

 \succ From Fig. 4(b)

- Above equations (1) and (2) suggest that motoring operation (+ve I_a) takes place when $\delta > (E/V)$ and regenerative braking operation takes place when $\delta < (E/V)$ and transition from motoring to braking and vice versa occurs when $\delta = (E/V)$.
- The above equations are similar to those obtained for the chopper of Fig. (1), and therefore, given the same numbers

Dynamic Braking of DC Motor

 \square

Dynamic Braking of Chopper fed DC Motor

- Dynamic braking circuit and its waveforms are shown in Figs. 1 and 2, respectively.
- ➢ During the interval 0 ≤ t ≤ t_{on}, i_a increases from i_{a1} to i_{a2}.
- > A part of generated energy is stored in inductance and rest is dissipated in R_a and T_r .
- ➢ During interval t_{on} ≤ t ≤ T, i_a decreases from i_{a2} to i_{a1} .
 Number 1

Fig. 1. Dynamic braking of DC motor.

Fig. 2. Waveform of Dynamic braking of DC motor.

Dynamic Braking of Chopper fed DC Motor

- The energies generated and stored in inductance are dissipated in braking resistance R_B, R_a and diode D.
- > Transistor T_r controls the magnitude of energy dissipated in R_B , and therefore, controls its effective value.
- → If i_a is assumed to be ripple less DC, then energy consumed E_N by R_B during a cycle of chopper operation is

$$E_{\rm N} = I_{\rm a}^2 R_{\rm B} (T - t_{\rm on}) \tag{1}$$

Dynamic Braking of Chopper fed DC Motor

Average power consumed by R_B

$$P = \frac{E_{\rm N}}{T} = I_{\rm a}^2 R_{\rm B} (1-\delta)$$

(2)

Effective value of R_B

$$R_{\rm BE} = \frac{P}{I_{\rm a}^2} = R_{\rm B}(1-\delta) \tag{3}$$

Where

$$\delta = \frac{t_{\rm on}}{T} \tag{4}$$

Key Points from Today's Class

- Chopper Control of Separately Excited DC Motor
- Regenerative Braking of Chopper fed Separately Excited DC Motor
- Motoring and Regenerative Braking of DC Motor
- Dynamic Braking of DC Motor

Key Points from Next Class

In the next class, we will be discussing on the

- Three-Phase Induction Motor
- Speed Control of Three Phase Induction Motors

Thank you so much for your attentions Q & A